Red vs. Blue: An Exploration of Mathematical
Gerrymandering Using Simulated Annealing

Bryce Tham, Nicholas Choa, and Julia Medina

Introduction

In the United States of America, it is a common practice to have political parties manipulate the
boundaries of electoral districts to favor a specific party. The party with the majority of members
in the House of Representatives can redraw the political boundaries of their state after a
decennial census. When the redrawing of the districts is intentionally used to benefit the minority
party by creating as many districts that will elect members of their party and the least for the
opposing party is called gerrymandering. This process includes drawing odd shaped districts to
maximize the supporters votes and minimize the opponents’ votes.

There are various constraints and criteria that redistricting plans must follow: all districts must be
roughly equal in population and the shape of district must be contiguous. These same constraints
imposed to the political aspect of gerrymandering will be used as the constraints in the code.
Other constraints exist in the real world (such as not intentionally weaken the voting strength of a
minority group) that are not explored in this report.

Through computer simulation, the boundaries of districts can be redrawn to optimize the
electoral count of the intended political party while minimizing the opponents’ count. In order to
achieve this, various definitions and function were created to simulate the optimization and
manipulation of a fictitious population. Using Python with scientific computing library NumPy,
we stored our data in a matrices and vectors to create a color graph to represent political parties
and show a clear graph of how the districts are separated/redrawn, allowing for a better visual
understanding of how gerrymandering works and to see how easily the outcomes can be changed
with the same given inputted data.

At first we created a matrix to represent a state with ones and zeros, each representing the
political party of each member of the house. Then, in order to keep true to the political
constraints, a function definition was created to assure that when a district is being redrawn it is
contiguous and roughly equal in size. Since the whole purpose of this optimization problem is to
minimize the opponent’s political votes, which can be clearly achieved through simulated
annealing.

With simulating annealing it makes it easier to check the neighbors state, which in this case is the
political affiliation of the member, and determines whether it should be combined with the
district depending on the probabilistic decision, the majority political party.

Mathematical Specification

While gerrymandering as a political concept is relatively simple to understand, the difficult part
comes when the need to mathematically model the problem specification is required. In order to
do this, we need to introduce several variables to represent the population points and their
respective neighbors, party affiliation, and district membership.

Consider a graphical model in which the vertices are population points and the edges represent
adjacency between two neighboring vertices. If each vertex is enumerated with an integer in the
range [0, p— 1] (where p is the number of population points), we can choose to model our
graph using an adjacency matrix 4 in which Al.j =1 means population points i and j are
neighbors and 4 ; = 0 means they are not. Because the graph is undirected, A is necessarily
symmetric (i.e. A; =4,).

To model party affiliation, we will use two vectors, one for each party. Let R be the vector in
which R; is the number of votes that political party R receives at population point i. Likewise,
let B be the vector in which B, is the number of votes that political party B receives at
population point i. We can generalize this model to include more than 2 political parties;
however, to simplify representation, we will assume that only these two political parties exist and
that any vote for any other party is insignificant.

District membership can be modelled similarly to party affiliation. Let D be the vector in which
D, is the district number of which population point i belongs to. For example, if Dy =2 then
population point 5 belongs to district 2. Like population points, each district is enumerated with
an integer in the range [0, n — 1] (where n is the number of districts).

As an optimization problem, the goal is to maximize the margin of victory of one party, which is
equivalent to minimizing the margin of victory of the other party. Suppose we wish to maximize
the margin of victory for political party R in a region where the overall majority of population
points lean towards political party B . Thus, we wish to minimize the margin of victory of B
using the following objective function M :

n p
M= ZO Sign(_ZO(B U1-RUDDLT= 1)
i= J=

Recall that 7 is the number of districts and p is the number of population points. D[j] =i
returns 1 if the district of j is equivalent to 7, and it returns 0 otherwise. sign(x) returns 1 if

x>0,-1if x<0,and 0 if x =0. The objective function M returns the margin of victory for
political party B ; remember, we are trying to minimize this.

There are two constraints that need to be modelled. The first is the equal population constraint £
which returns the difference in size between the district with the most population points and the
district with the least:

E =max (s;) —min (s;)

The variable s, is an element in the size vector S of magnitude » in which the integer at index
i is the number of population points in district i. The vector S can be determined as follows:

DM~

S=1
j=0

D] =0, ... %axn=nn
2

Recall that we wish E to be smaller than some value. Therefore, we can set a tolerable variance
variable var such that the objective function is constrained to E<var.

The second constraint is the contiguous district constraint C which returns 1 if all districts are
contiguous and 0 otherwise:

c:ﬁdnmmou=§wm=0m»

Jj=0

The function conn(i) returns a set of population points that are both connected to population
point i and are part of the same district as i. || x || returns the magnitude (or size) of a set x;
therefore, || conn(i) || returns the number of population points that are connected to and are of
the same district as i. D[i] = D[j] returns 1 if the district of i is the same as the district of ;.

P

Thus, || conn(i) || = Y(D[i] = D[j]) will return 1 if the number of points in conn(i) is the same
Jj=0

as the total number of points in district D[i] and 0 otherwise; if for any i this expression returns

0, then C = 0, ensuring contiguity if C = 1.

Simulated Annealing

The main approach to this problem involved using simulated annealing, a method often used for
both constrained and unconstrained optimization problems, which helps in approximating some
global optimum. The nomenclature behind this technique was very much inspired by annealing
in metal-works, where one has a control over the heating and cooling of a material to increase the
size of its crystals, minimize its defects, and manipulate it into a more precise form. Our source
code does exactly this; it takes an initialized map of unweighted population points, that have
been put into districts, and uses some global variable as the “temperature” that slowly cools
down as the map is constantly being transformed and manipulated (Kirkpatrick, 1) depending on

which color we would like to win. A win for us meant maximizing a margin of winning “votes”
or population points.

In more detail, the temperature would start at some initial state; we used the value of 1000 at
first. Then we would input it into a function for simulated annealing. The map of districts would
then undergo a process that would rearrange the points into different districts. While being
rearranged, we would constantly check and make sure that it was getting closer to a minimized
loss for the opposing party. Not only that, but we also implemented the various constraints
mentioned beforehand that help us simulate more realistic form of gerrymandering (Levitt, 2).

In order to ensure the validity of our model, we needed to make sure that all points in the district
were adjacent to one another. We achieved this by checking the adjacency matrix relative to the
population points on the map. We could not have districts spotted all over the map and say that
these separated areas were being correctly represented. A constraint function we have
implemented is one that makes sure that all the districts have roughly the same amount of people.
In smaller overall population counts, the variance between district populations is very minimal if
not non-existent. We decided to go with a rough equality constraint because much like in real
life, where America’s congressional districts are not all completely equal. Also, this helps avoid
stalemates when there is an even number of population and assures that all points are included,
which brings us to the third constraint. The other constraint we have implemented into a function
makes sure that all the districts are connected to each other, which also ensures that no points are
left out and that the entire population on the map is being represented. All of these constraints
provide a more realistic approach to our mathematical perspective towards gerrymandering.

Every time the program would disobey one of these constraints, a very large penalty would be
added to the global temperature constant. The penalty can range from 10 to 1000 in order to
achieve better districts. Having the temperature set back so far away from 0 is important because
we found it very common that if one of the rules had been broken, further manipulation of the
board often made things worse from that point onwards.

Once the “temperature” value gets close enough to 0, the resulting array provides perfectly
manipulated matrix that has all the points included in (roughly) equally populated districts.
Utilizing simulated annealing, the average amount of iterations and wins amongst a batch of
simulated gerrymandering sessions prove how effective our program is:

batch size average iteration count wins/losses/draws (blue)
50 134 32/2/9
100 149 68/5/28
200 148 141/32/27

(We set the blue party to be the winner of 16 points, with a majority of them being red.)

Quantitative Results

The data below shows the results of performing gerrymandering via the simulated annealing
algorithm. Recall that » is the number of districts, p is the number of population points, and r
is the percentage of population points that are blue. Each variable setting is run 50 times and the
margin of victory is averaged to give the results for each row. Political party affiliation is chosen
randomly for each population point adhering to the percentage defined by r.

The table below shows the resulting opponent margins of victory for the blue party when the
number of districts is varied in the set n € {2,4,6,8,10,12,14} with p =16 and r=0.6.

n p r blue margin of victory blue wins red wins draws
2 16 0.6 0.02+0.13 10 6 34
4 16 0.6 -1.56 £0.20 4 36 10
6 16 0.6 -1.98 £ 0.26 2 37 11
8 16 0.6 -2.06 +0.29 4 38 8
10 16 0.6 -2.0+£0.51 13 28 9
12 16 0.6 0.82+0.59 27 18 5
14 16 0.6 2.1+0.48 36 13 1

The table below shows the resulting opponent margins of victory for the blue party when the
number of population points is varied in the set p € {9,16,25,36,49} with n=8 and r=0.6.

n p r blue margin of victory blue wins red wins draws
8 9 0.6 0.84 £0.44 24 13 13
8 16 0.6 -2.84+0.26 2 41 7
8 25 0.6 -3.06 £0.25 0 43 7
8 36 0.6 -3.34+0.24 1 46 3

8 49 0.6 -3.26 £0.23 0 44 6

The table below shows the resulting opponent margins of victory for the blue party when the
percentage of blue points is varied in the set » € {0.5,0.6,0.7,0.8,0.9} with n =8 and p =16.

n p r blue margin of victory blue wins red wins draws

8 16 0.5 -4.28 £0.22 0 48 2

8 16 0.6 -2.32+0.32 5 38 7

8 16 0.7 -0.54 +£0.37 14 25 11

8 16 0.8 226+ 0.41 31 7 12

8 16 0.9 4.52+0.32 46 0 4
Conclusions

The data suggests the following trends regarding gerrymandering via simulated annealing.

When varying the number of districts, the margin of victory for the blue party forms an inverse
bell curve with its minimum when n = p/2 . If the number of districts is too small, then there is
less "wiggle" room when it comes to manipulating the district lines in a particular party's favor;
if the number of districts is too large, then most of the districts will be made up of single
population points, effectively taking the majority vote of the entire graph (in which case the
majority party will win). Therefore, to ensure maximize the effects of gerrymandering, it is best
to initialize the number of districts as half the total number of population points and adjust it
accordingly (we will see later that this point is not always the global minimum).

When varying the number of population points, the margin of victory for the blue party decreases
as the total number of population points in the graph increases until no further reductions can be
made. For example, the margin of victory for blue sees the steepest decrease between p =9 and
p = 16, but averages out to a constant value after p = 25. This is because like with the number
of districts, a larger number of population points allows for more "wiggle" room to maximize the
effects of gerrymandering. Beware, however, of the caveat mentioned following the first
conclusion; increasing the number of population points to #» << p may result in highly
diminishing returns.

When varying the percentage of blue points, an obvious trend occurs: the higher the percentage
of blue points in the graph, the higher the margin of victory is for the blue party. The interesting
thing to note about this data is that even with a graph made up of 80% blue points, it is still
possible for the red party to win in at least some scenarios. While seemingly shocking, this is
consistent with some estimates that the United States presidential election can be won with only
22% of the popular vote (Kuzoian). Therefore, the main conclusion to be drawn is this: in most
scenarios, so long as it maintains some measure of reasonability, it is very possible for the
minority party to win an election through gerrymandering.

Gerrymandering New York

As mentioned earlier, after a state calculates its total population and number of representatives in
the census, it then determines how many districts it will have. The majority party will redraw its
districts. In order to test this optimization problem in a real life scenario, New York was chosen
as an example. To represent New York within the code, an adjacency matrix was created with
each node representing the state’s counties, two arrays to represent the two political parties, and
one array to represent the population counts with the indexing corresponding to the counties.
Within the arrays corresponding to the political parties, there is either a 1 or 0 to represent
whether that district was won or not with the indexing matching the latter. The array
corresponding to the population count contained the number of population rounded to the closest
tenth thousand. When the information on New York is run, it first determines the original victory
margin of the blue party. It then goes through the simulated annealing to determine the new
victory margin. Once it is finished it was seen that in one try the victory margin had decreased
from 15 to 7 and in another one from 15 to 8, showing that the simulation is not perfect but falls
within the margin of errors that could have occurred.

Difficulty & Individual Effort

The individual efforts of each member of this team is described below.

Bryce worked on the mathematical specification and the conversion of the objective function and
constraint functions into code. The difficult part about this was deciding how to clearly define
these functions in mathematical terms that could be easily and directly translated into Python. In
addition, Bryce also offered his version of the simulated annealing function to run the
optimization problem, thereby contributing to the data shown in the results above. He also wrote
up the main conclusions found in the data including any trends worth mentioning in the report.

Nick worked on a few on the constraints functions, the adjacency matrix setup function, put
together the poster, and covered the simulated annealing section of the paper. It was very
challenging when it came to creating the adjacency matrix generator, as the previous functions
took the matrix in a zig-zag/snake form and the amount of population points and rows varied.

Julia worked on simulating the state of New York on the functions, the introduction on
Gerrymandering, and Gerrymandering New York section of the paper. The most challenging part
was making sure the adjacency matrix represented New York correctly and assuring that the
implementing was simulation was done correctly.

Works Cited

Kirkpatrick, C. D. Gelatt Jr.1, M. P. Vecchi 21 Research Staff Members at IBM Thomas J.
Watson Research Center, Yorktown Heights, New York 105982 Instituto Venezolano De
Investigaciones Cientificas, Caracas 1010A, Venezuela, S. "Optimization by Simulated
Annealing." Optimization by Simulated Annealing | Science. N.p., n.d. Web. 04 Dec. 2016.

Kuzoian, Alex. "Turns out a Presidential Candidate Could Win the Election with Just 22% of the
Popular Vote." Business Insider. Business Insider, 18 May 2016. Web. 08 Dec. 2016.

Levitt, Justin. "Where Are the Lines Drawn?" All About Redistricting -- Where the Lines Are
Drawn. N.p., n.d. Web. 04 Dec. 2016.

"Simulated Annealing." Simulated Annealing - MATLAB & Simulink. N.p., n.d. Web. 04 Dec.
2016.

